Skip to content

Peculiarities

What does apply return and why?

apply returns the target geometries returned by f, whatever type/package they are from, but geometries, features or feature collections that wrapped the target are replaced with GeoInterace.jl wrappers with matching GeoInterface.trait to the originals. All non-geointerface iterables become Arrays. Tables.jl compatible tables are converted either back to the original type if a Tables.materializer is defined, and if not then returned as generic NamedTuple column tables (i.e., a NamedTuple of vectors).

It is recommended for consistency that f returns GeoInterface geometries unless there is a performance/conversion overhead to doing that.

Why do you want me to provide a target in set operations?

In polygon set operations like intersection, difference, and union, many different geometry types may be obtained - depending on the relationship between the polygons. For example, when performing an union on two nonintersecting polygons, one would technically have two disjoint polygons as an output.

We use the target keyword to allow the user to control which kinds of geometry they want back. For example, setting target to PolygonTrait will cause a vector of polygons to be returned (this is the only currently supported behaviour). In future, we may implement MultiPolygonTrait or GeometryCollectionTrait targets which will return a single geometry, as LibGEOS and ArchGDAL do.

This also allows for a lot more type stability - when you ask for polygons, we won't return a geometrycollection with line segments. Especially in simulation workflows, this is excellent for simplified data processing.

_True and _False (or BoolsAsTypes)

Warning

These are internals and explicitly not public API, meaning they may change at any time!

When dispatch can be controlled by the value of a boolean variable, this introduces type instability. Instead of introducing type instability, we chose to encode our boolean decision variables, like threaded and calc_extent in apply, as types. This allows the compiler to reason about what will happen, and call the correct compiled method, in a stable way without worrying about