Skip to content

Polygonizing raster data

julia
export polygonize

#=
The methods in this file convert a raster image into a set of polygons,
by contour detection using a clockwise Moore neighborhood method.

The resulting polygons are snapped to the boundaries of the cells of the input raster,
so they will look different from traditional contours from a plotting package.

The main entry point is the `polygonize` function.

```@docs
polygonize
```

# Example

Here's a basic example, using the `Makie.peaks()` function.  First, let's investigate the nature of the function:
```@example polygonize
using Makie, GeometryOps
n = 49
xs, ys = LinRange(-3, 3, n), LinRange(-3, 3, n)
zs = Makie.peaks(n)
z_max_value = maximum(abs.(extrema(zs)))
f, a, p = heatmap(
    xs, ys, zs;
    axis = (; aspect = DataAspect(), title = "Exact function")
)
cb = Colorbar(f[1, 2], p; label = "Z-value")
f
```

Now, we can use the `polygonize` function to convert the raster data into polygons.

For this particular example, we chose a range of z-values between 0.8 and 3.2,
which would provide two distinct polygons with holes.

```@example polygonize
polygons = polygonize(xs, ys, 0.8 .< zs .< 3.2)
```
This returns a `GI.MultiPolygon`, which is directly plottable.  Let's see how these look:

```@example polygonize
f, a, p = poly(polygons; label = "Polygonized polygons", axis = (; aspect = DataAspect()))
```

Finally, let's plot the Makie contour lines on top, to see how the polygonization compares:
```@example polygonize
contour!(a, xs, ys, zs; labels = true, levels = [0.8, 3.2], label = "Contour lines")
f
```

# Implementation

The implementation follows:
=#

"""
    polygonize(A::AbstractMatrix{Bool}; kw...)
    polygonize(f, A::AbstractMatrix; kw...)
    polygonize(xs, ys, A::AbstractMatrix{Bool}; kw...)
    polygonize(f, xs, ys, A::AbstractMatrix; kw...)

Polygonize an `AbstractMatrix` of values, currently to a single class of polygons.

Returns a `MultiPolygon` for `Bool` values and `f` return values, and
a `FeatureCollection` of `Feature`s holding `MultiPolygon` for all other values.


Function `f` should return either `true` or `false` or a transformation
of values into simpler groups, especially useful for floating point arrays.

If `xs` and `ys` are ranges, they are used as the pixel/cell center points.
If they are `Vector` of `Tuple` they are used as the lower and upper bounds of each pixel/cell.

Keywords

julia
- `minpoints`: ignore polygons with less than `minpoints` points.
- `values`: the values to turn into polygons. By default these are `union(A)`,
    If function `f` is passed these refer to the return values of `f`, by
    default `union(map(f, A)`. If values `Bool`, false is ignored and a single
    `MultiPolygon` is returned rather than a `FeatureCollection`.

Example

julia
```julia
using GeometryOps
A = rand(100, 100)
multipolygon = polygonize(>(0.5), A);
```
"""
polygonize(A::AbstractMatrix{Bool}; kw...) = polygonize(identity, A; kw...)
polygonize(f::Base.Callable, A::AbstractMatrix; kw...) = polygonize(f, axes(A)..., A; kw...)
polygonize(A::AbstractMatrix; kw...) = polygonize(axes(A)..., A; kw...)
polygonize(xs::AbstractVector, ys::AbstractVector, A::AbstractMatrix{Bool}; kw...) =
    _polygonize(identity, xs, ys, A)
function polygonize(xs::AbstractVector, ys::AbstractVector, A::AbstractMatrix;
    values=sort!(Base.union(A)), kw...
)
    _polygonize_featurecollection(identity, xs, ys, A; values, kw...)
end
function polygonize(f::Base.Callable, xs::AbstractRange, ys::AbstractRange, A::AbstractMatrix;
    values=_default_values(f, A), kw...
)
    if isnothing(values)
        _polygonize(f, xs, ys, A; kw...)
    else
        _polygonize_featurecollection(f, xs, ys, A; kw...)
    end
end
function _polygonize(f::Base.Callable, xs::AbstractRange, ys::AbstractRange, A::AbstractMatrix;
    kw...
)

Make vectors of pixel bounds

julia
    xhalf = step(xs) / 2
    yhalf = step(ys) / 2

Make bounds ranges first to avoid floating point error making gaps or overlaps

julia
    xbounds = range(first(xs) - xhalf; step = step(xs), length = length(xs) + 1)
    ybounds = range(first(ys) - yhalf; step = step(ys), length = length(ys) + 1)
    Tx = eltype(xbounds)
    Ty = eltype(ybounds)
    xvec = similar(Vector{Tuple{Tx,Tx}}, length(xs))
    yvec = similar(Vector{Tuple{Ty,Ty}}, length(ys))
    for (xind, i) in enumerate(eachindex(xvec))
        xvec[i] = xbounds[xind], xbounds[xind+1]
    end
    for (yind, i) in enumerate(eachindex(yvec))
        yvec[i] = ybounds[yind], ybounds[yind+1]
    end
    return _polygonize(f, xvec, yvec, A; kw...)
end
function _polygonize(f, xs::AbstractVector{T}, ys::AbstractVector{T}, A::AbstractMatrix;
    minpoints=0,
) where T<:Tuple
    (length(xs), length(ys)) == size(A) || throw(ArgumentError("length of xs and ys must match the array size"))

Extract the CRS of the array (if it is some kind of geo array / raster)

julia
    crs = GI.crs(A)

Define buffers for edges and rings

julia
    rings = Vector{T}[]

    strait = true
    turning = false

Get edges from the array A

julia
    edges = _pixel_edges(f, xs, ys, A)

Keep dict keys separately in a vector for performance

julia
    edgekeys = collect(keys(edges))

We don't delete keys we just reduce length with nkeys

julia
    nkeys = length(edgekeys)

Now create rings from the edges, looping until there are no edge keys left

julia
    while nkeys > 0
        found = false
        local firstnode, nextnodes, nodestatus

Loop until we find a key that hasn't been removed, decrementing nkeys as we go.

julia
        while nkeys > 0

Take the first node from the array

julia
            firstnode::T = edgekeys[nkeys]
            nextnodes = edges[firstnode]
            nodestatus = map(!=(typemax(first(firstnode)))  first, nextnodes)
            if any(nodestatus)
                found = true
                break
            else
                nkeys -= 1
            end
        end

If we found nothing this time, we are done

julia
        found == false && break

Check if there are one or two lines going through this node and take one of them, then update the status

julia
        if nodestatus[2]
            nextnode = nextnodes[2]
            edges[firstnode] = (nextnodes[1], map(typemax, nextnode))
        else
            nkeys -= 1
            nextnode = nextnodes[1]
            edges[firstnode] = (map(typemax, nextnode), map(typemax, nextnode))
        end

Start a new ring

julia
        currentnode = firstnode
        ring = [currentnode, nextnode]
        push!(rings, ring)

Loop until we close a the ring and break

julia
        while true

Find a node that matches the next node

julia
            (c1, c2) = possiblenodes = edges[nextnode]
            nodestatus = map(!=(typemax(first(firstnode)))  first, possiblenodes)
            if nodestatus[2]

When there are two possible node, choose the node that is the furthest to the left We also need to check if we are on a straight line to avoid adding unnecessary points.

julia
                selectednode, remainingnode, straightline = if currentnode[1] == nextnode[1] # vertical
                    wasincreasing = nextnode[2] > currentnode[2]
                    firstisstraight = nextnode[1] == c1[1]
                    firstisleft = nextnode[1] > c1[1]
                    secondisstraight = nextnode[1] == c2[1]
                    secondisleft = nextnode[1] > c2[1]
                    if firstisstraight
                        if secondisleft
                            if wasincreasing
                                (c2, c1, turning)
                            else
                                (c1, c2, straight)
                            end
                        else
                            if wasincreasing
                                (c1, c2, straight)
                            else
                                (c2, c1, secondisstraight)
                            end
                        end
                    elseif firstisleft
                        if wasincreasing
                            (c1, c2, turning)
                        else
                            (c2, c1, secondisstraight)
                        end
                    else # firstisright
                        if wasincreasing
                            (c2, c1, secondisstraight)
                        else
                            (c1, c2, turning)
                        end
                    end
                else # horizontal
                    wasincreasing = nextnode[1] > currentnode[1]
                    firstisstraight = nextnode[2] == c1[2]
                    firstisleft = nextnode[2] > c1[2]
                    secondisleft = nextnode[2] > c2[2]
                    secondisstraight = nextnode[2] == c2[2]
                    if firstisstraight
                        if secondisleft
                            if wasincreasing
                                (c1, c2, straight)
                            else
                                (c2, c1, turning)
                            end
                        else
                            if wasincreasing
                                (c2, c1, turning)
                            else
                                (c1, c2, straight)
                            end
                        end
                    elseif firstisleft
                        if wasincreasing
                            (c2, c1, secondisstraight)
                        else
                            (c1, c2, turning)
                        end
                    else # firstisright
                        if wasincreasing
                            (c1, c2, turning)
                        else
                            (c2, c1, secondisstraight)
                        end
                    end
                end

Update edges

julia
                edges[nextnode] = (remainingnode, map(typemax, remainingnode))
            else

Here we simply choose the first (and only valid) node

julia
                selectednode = c1

Replace the edge nodes with empty nodes, they will be skipped later

julia
                edges[nextnode] = (map(typemax, c1), map(typemax, c1))

Check if we are on a straight line

julia
                straightline = currentnode[1] == nextnode[1] == c1[1] ||
                               currentnode[2] == nextnode[2] == c1[2]
            end

Update the current and next nodes with the next and selected nodes

julia
            currentnode, nextnode = nextnode, selectednode

Update the current node or add a new node to the ring

julia
            if straightline

replace the last node we don't need it

julia
                ring[end] = nextnode
            else

add a new node, we have turned a corner

julia
                push!(ring, nextnode)
            end

If the ring is closed, break the loop and start a new one

julia
            nextnode == firstnode && break
        end
    end

Define wrapped LinearRings, with embedded extents so we only calculate them once

julia
    linearrings = map(rings) do ring
        extent = GI.extent(GI.LinearRing(ring))
        GI.LinearRing(ring; extent, crs)
    end

Separate exteriors from holes by winding direction

julia
    direction = (last(last(xs)) - first(first(xs))) * (last(last(ys)) - first(first(ys)))
    exterior_inds = if direction > 0
        .!isclockwise.(linearrings)
    else
        isclockwise.(linearrings)
    end
    holes = linearrings[.!exterior_inds]
    polygons = map(view(linearrings, exterior_inds)) do lr
        GI.Polygon([lr]; extent=GI.extent(lr), crs)
    end

Then we add the holes to the polygons they are inside of

julia
    assigned = fill(false, length(holes))
    for i in eachindex(holes)
        hole = holes[i]
        prepared_hole = GI.LinearRing(holes[i]; extent=GI.extent(holes[i]))
        for poly in polygons
            exterior = GI.Polygon(StaticArrays.SVector(GI.getexterior(poly)); extent=GI.extent(poly))
            if covers(exterior, prepared_hole)

Hole is in the exterior, so add it to the polygon

julia
                push!(poly.geom, hole)
                assigned[i] = true
                break
            end
        end
    end

    assigned_holes = count(assigned)
    assigned_holes == length(holes) || @warn "Not all holes were assigned to polygons, $(length(holes) - assigned_holes) where missed from $(length(holes)) holes and $(length(polygons)) polygons"

    if isempty(polygons)

TODO: this really should return an empty MultiPolygon but GeoInterface wrappers cant do that yet, which is not ideal...

julia
        @warn "No polgons found, check your data or try another function for `f`"
        return nothing
    else

Otherwise return a wrapped MultiPolygon

julia
        return GI.MultiPolygon(polygons; crs, extent = mapreduce(GI.extent, Extents.union, polygons))
    end
end

function _polygonize_featurecollection(f::Base.Callable, xs::AbstractRange, ys::AbstractRange, A::AbstractMatrix;
    values=_default_values(f, A), kw...
)
    crs = GI.crs(A)

Create one feature per value

julia
    features = map(values) do value
        multipolygon = _polygonize(x -> isequal(f(x), value), xs, ys, A; kw...)
        GI.Feature(multipolygon; properties=(; value), extent = GI.extent(multipolygon), crs)
    end

    return GI.FeatureCollection(features; extent = mapreduce(GI.extent, Extents.union, features), crs)
end

function _default_values(f, A)

Get union of f return values with resolved eltype

julia
    values = map(identity, sort!(Base.union(Iterators.map(f, A))))

We ignore pure Bool

julia
    return eltype(values) == Bool ? nothing : collect(skipmissing(values))
end

function update_edge!(dict, key, node)
    newnodes = (node, map(typemax, node))

Get or write in one go, to skip a hash lookup

julia
    existingnodes = get!(() -> newnodes, dict, key)

If we actually fetched an existing node, update it

julia
    if existingnodes[1] != node
        dict[key] = (existingnodes[1], node)
    end
end

function _pixel_edges(f, xs::AbstractVector{T}, ys::AbstractVector{T}, A) where T<:Tuple
    edges = Dict{T,Tuple{T,T}}()

First we collect all the edges around target pixels

julia
    fi, fj = map(first, axes(A))
    li, lj = map(last, axes(A))
    for j in axes(A, 2)
        y1, y2 = ys[j]
        for i in axes(A, 1)
            if f(A[i, j]) # This is a pixel inside a polygon

xs and ys hold pixel bounds

julia
                x1, x2 = xs[i]

We check the Von Neumann neighborhood to decide what edges are needed, if any.

julia
                (j == fi || !f(A[i, j-1])) && update_edge!(edges, (x1, y1), (x2, y1)) # S
                (i == fj || !f(A[i-1, j])) && update_edge!(edges, (x1, y2), (x1, y1)) # W
                (j == lj || !f(A[i, j+1])) && update_edge!(edges, (x2, y2), (x1, y2)) # N
                (i == li || !f(A[i+1, j])) && update_edge!(edges, (x2, y1), (x2, y2)) # E
            end
        end
    end
    return edges
end

This page was generated using Literate.jl.